I. Krumme Flächen und Aetzerscheinungen am Stolzit. Element p₀ des Raspit.

Von

C. Hlawatsch in Wien.

(Hierzu Taf. I.)

Der Verf. erwarb im Herbste 1897 vom Mineralienhändler Hrn. J. Böhm in Wien eine Stufe von Brokenhill, bei welcher auf einer Kruste von Psilomelan, die ihrerseits eine lockere, zersetzte Masse bedeckte, Krystalle von Stolzit und Raspit sassen. Die letzteren sind die älteren, da sie von den ersteren theilweise eingeschlossen sind.

Die Krystalle des Stolzites, welche zunächst besprochen werden sollen, sind durchsichtig, stroh- bis honiggelb, von einem Durchmesser von 4-5 mm. Sie sind nach allen drei Dimensionen ziemlich gleichmässig entwickelt; tafelförmiger Habitus nach (004) zeigt sich nur bei kleinen Individuen. Ebenso halten sich die wenigen Flächen, welche an diesen Krystallen ausgebildet sind $(e=0,\ e=04,\ p=4)$, so ziemlich das Gleichgewicht.

Krumme Flächen.

Ausser den genannten, gut spiegelnden Flächen treten aber bei fast allen Krystallen der Stufe schiefe, oft stark gekrümmte, matte Abstumpfungen der Kante c:e auf, welche auf beiden Krystallhälften gemäss der Symmetrie der pyramidalen Hemiëdrie vertheilt sind. Diese Vertheilung bildet zugleich das Kriterium für die Abwesenheit von Zwillingsbildung nach (004), da in diesem Falle die Flächen bei der Projection auf (004) in gleichem, statt in entgegengesetztem Sinne aufeinander folgen müssten. Eine Symbolbestimmung war in Folge der starken Krümmung und des matten Glanzes, der oft ein Reflectiren des Signales gänzlich verhinderte, unmöglich. Ausserdem zeigt der Winkel φ starke Variationen, so dass auch eine bestimmte Zonenangehörigkeit nicht erkennbar war. Der Winkel ϱ

Groth, Zeitschrift f. Krystallogr. XXXI.

2 C. Hlawatsch.

nähert sich dem der Fläche $0\frac{1}{4}$. Der Verf. hält diese Flächen nicht für wirkliche Krystallflächen, aber wegen ihrer starken Abweichung aus der Zone auch nicht für Vicinale zu $0\frac{1}{4}$. Zufällige Wachsthumsstörungen oder mechanische Deformationen erscheinen durch die Regelmässigkeit ihres Auftretens ausgeschlossen. Gegen die Entstehung durch Aetzung spricht die gute Ausbildung der anderen Flächen; sie wären also noch am ehesten mit den Uebergangsflächen Goldschmidt's 1) zu vergleichen, in welchem Falle sie eine gegen $0\frac{1}{4}$ ziehende Zone noch unbestimmter Lage andeuten würden.

Die folgende Tabelle I giebt die, gleich den übrigen hier publicirten Messungen, am zweikreisigen Goniometer von V. Goldschmidt, Modell 1896²), vorgenommenen Positionsbestimmungen an drei Krystallen, bei welchen diese Flächen noch mittelst Signalverkleinerung erkennbare Reflexzüge gaben. Fig. 4, Taf. I stellt einen Krystall mit solchen schematisch eingezeichneten Abstumpfungsflächen dar (Kryst. 4); Fig. 2a, 2b ist die gnomonische Projection für beide Krystallhälften des Kryst. 1, auf (001) und (00 $\overline{1}$) projicirt. Der Raumersparniss halber ist nur der Raum innerhalb $0\frac{1}{3}$ berücksichtigt worden. In Fig. 3 sind die beobachteten Positionspunkte an den krummen Flächen durch kleine Ringe bezeichnet. Tabelle II giebt zum Vergleiche die Grössen φ , φ , x und y für einige nicht beobachtete Flächen an, welche eine ähnliche Lage besitzen würden.

Messungstabelle der gekrümmten Flächen am Stolzit.

		1	ane	ne i.	
		Krystall	1.	Vorde	rseite.
Fläche	Reflex - Nr.	Symbol Gdt. Miller		Ф	ę

Fläche	Reflex- Nr.	Syı Gdt.	mbol Miller	ø	ę	x	y
\overline{e}		04	011	00 0'	57021'	0,000	1,561
$oldsymbol{p}$	1	1	444	45 2	65 35	1,558	1,557
I	4			65 40	21 11	0,353	0,160
	2	i I		75 35	21 11	0,375	0,097
	3	<u> </u>		75 36	22 55	0,440	0,105
	4			70 21	22 35	0,393	0,440
	5	l I		62 36	19 24	0,343	0,462
	6			73 41	16 47	0,289	0,085
	7			65 28	19 18	0,349	0,445
	8		1	73 38	19 29	0,340	0,100
	9			69 11	20 6	0,342	0,130
11	1			179 5	23 51	0,007	0,442
	2			179 27	22 15	0,004	-0,409

⁴⁾ Diese Zeitschr. 1896, 26, 1.

²⁾ Diese Zeitschr. 1898, 29, 333.

Dival.	Reflex-	Symbol	1			:
Fläche	Nr.	Gdt. Miller	φ	θ	<u>x</u>	y
	3		479020'	21031'	0,005	-0,39
	4		478 20	18 43	0,010	-0,339
	5	:	154 29	20 15	0,159	-0,333
	6	,	152 13	20 4	0,170	-0,323
	7		152 13	18 17	0,154	-0,299
	8	İ	160 0	20 4	0,425	0,348
II u. IV		zu sch	wache Reflex	е		
			Rückseite.			
I	4	[50 2'	240191	0,040	0,450
	2		5 50	24 21	0,046	0,450
	3	1	5 50	24 6	0,045	0,44
	4		7 14	22 3	0,054	0,409
	5		8 4	20 24	0,052	0,36
	6		8 4	23 36	0,061	0,43
Ħ	4		97 44	22 15	0,405	-0,05
	2		97 41	24 33	0,391	-0,05
	3		97 41	21 2	0,381	-0,05
Ш	4		<u>—175 39</u>	23 58	-0,044	—0,35
	2	1	-175 3	22 3 6	-0,036	-0,41
	3		174 46	24 37	-0,036	0,39
IV	4		-85 44	25 10	0,468	0,03
	2		83 24	21 26	-0,390	0,04
	3		—82 54	19 36	-0,354	0,04
			Krystall 2.			
$oldsymbol{e}$		04 044	00 0'	57020'	0,000	0,56
p		1 411	44 59	65 38	1,564	1,56
ĭ	4	-	15 18	24 43	-0,105	0,38
	2		13 41	24 56	-0,095	0,39
	3	Ì	16 9	22 8	0,113	0,39
	4		16 9	21 38	0,410	0,38
	5		<u>—17 2</u>	21 14	-0,114	0,37
	6		-13 56	19 7	-0,083	0,33
	7		<u> </u>	20 7	-0,407	0,35
	· 8		-16 10	20 16	-0,103	0,35
	9		3 25	24 1	-0,024	0,40
	10		— 3 56	22 6	-0,028	0,40
	11		— 4 49	22 6	-0,034	0,40
	12		5 34	20 48	-0,037	0,37
7.7	13		— 9 35	22 8	0,068	0,40
II	4		— 98 35	20 43	0,374	-0,05
	2		-105 43	22 43	0,393	-0,11
	3	i	-105 29	20 59	-0,370	-0,10

Krystall 3.

Fläche	Reflex- Nr.	Syr Gdt.	nbol Miller	g		ę	\boldsymbol{x}	y
\overline{e}	<u>!</u>	01	011	00	۸/	57020'	0,000	0,560
p p		4	111	_	0	65 36	1,559	1,559
I	l			!	f	ehlt	,	,
П	4			108	2	22034'	0,395	-0,129
	2			105 1	2	20 57	0,370	-0,100
	3	l	!	107 4	6	19 39	0,344	—0,106
	4			108 5	3	20 46	0,359	0,423
	5			107	4	20 52	0,364	0,112
Ш	4			175 4	7	23 7	0,035	-0,425
	2		1 :	-174 8	8	22 15	-0,038	-0,407
	3			474	6	24 22	-0,040	-0,389
	4			—173 3	7	20 28	-0,042	-0,371
	5		1	—173	4	19 42	0,043	-0,355
	6			-171 4	2	19 3	-0,050	0,342
ıv	4		i	—85 9	0	22 3	-0.404	0,033
	2			84 1	5	23 11	-0,426	0,043
	3			-74 1	4	20 47	-0,365	0,103

Tabelle II.

Nicht beobachtete Flächen, welche in wahrscheinlichen Zonen liegen und deren Lage ähnlich der der gerundeten Flächen ist (zum Vergleiche).

Syı	mbol				İ
Gdt.	Miller	φ	Q	x	y
01/4	0.1.4	00 0'	210197	0,0000	0,3904
$\frac{1}{30}\frac{1}{4}$	1.10.40	5 42	21 24	0,0390	0,390
1 2 1 2 9	3.8.36	20 33	20 19	0,430	0,347
1 1 16 4	1.4.16	14 2	24 54,5	0,0975	0,3904
1 1 36 4	1.9.16	6 20	21 26	0,043	0,3904

Bei Krystall 1 scheint eine Verschiedenheit zwischen Ober- und Unterseite vorzuliegen. Dieselbe kann aber nicht als Beweis für die Hemimorphie des Stolzits angesehen werden, da auf der Oberseite Theilreflexe auftreten, welche denen der Unterseite entsprechen. Achnliche Theilung des Reflexes tritt auch bei Krystall 2 auf.

Aetzversuche.

Um über das Vorhandensein von Hemimorphie beim Stolzit, welches schon wiederholt (von Naumann, Kerndt u. A.) behauptet worden war, ein weiteres Urtheil zu erhalten, wurden Aetzversuche mit Kalilauge angestellt. Bei einer Concentration 4:5 traten auch bei Behandlung in der

Wärme und einer Aetzungsdauer von ca. 10' nur schwache, längliche Vertiefungen auf, welche wohl die pyramidale Hemiëdrie, aber keine Hemimorphie andeuteten. Bei einer Concentration von 4:2 war bei einer Einwirkung in der Wärme durch ca. 5' der Krystall stark angegriffen, die Kanten e:c, $e_1:p_1$ stark gerundet. e war treppenartig vertieft; die Treppen waren parallel der Kante e:p. Auf e und p zeigten sich deutliche Aetzfiguren, deren Gestalt in Fig. 5 schematisch wiedergegeben ist (projicirt auf (010)). Der Deutlichkeit halber sind die Aetzfiguren auf e resp. e, auf diese Flächen selbst projicirt, in Fig. 6 wiedergegeben. Die durch die Aetzfiguren hervorgerufenen Reflexzüge geben die Fig. 3 und 4 in gnomonischer Projection, und zwar Fig. 3 auf e0004), Fig. 4 auf e0000700 projicirt, entsprechend den in Tabelle III und e101 zusammengestellten Beobachtungsreihen.

Tabelle III.

Messungstabelle für die Aetzerscheinungen an Krystall 3.

A. Projection auf 0(004).

	Reflex-		nhal	į			ĺ
Fläche	Nr.	Gdt.	nbol Miller	Ģ	ę	x	<i>y</i>
c	1	!	004	132020'	3026'	0,044	-0,040
	2	:		134 26	9 21	0,117	0,115
	3		Ì	134 26	13 7	0,466	-0,163
	4	ì		<u> </u>	16 40	-0,211	+0,213
	5	!		154 10	19	-0,009	-0,018
	6			—163 2	4 50	-0,025	-0,081
	7	i		-148 21	7 0	-0,064	-0,105
	8			138 16	5 43	-0,061	-0,068
	9			92 35	7 4	-0,123	0,006
	10			- 92 33	8 59	-0,458	-0,007
	11			89 9	9 32	0,468	0,002
	12			96 43	26 34	0,496	0,054
	13		1	92 0	29 19	0,564	0,020
p^4	_	71	714	— 45 0	65 40	-1,5636	1,5636
p^3	4	4	771	-137 11	66 18	1,548	-1,671
	2			136 8	an	dauernder Z	ug
	3			-141 46	63 16	-1,229	1,560
	4	!		131 19	62 26	-1,472	—1,265
	5		l_	-137 29	66 28	-1,552	-1,693
e^1	6	4 <u>4 0</u>	id 707	137 47	66 28	-1,543	-1,701
p^2	4	47	171	135 23	65 20	1,529	-1,550
4	2	İ		127 29	64 42	1,474	1,130
	3			449 5	60 41	1,556	-0,866
	4			443 43	59 52	1,583	-0,679
	¹ 5			147 16	66 2	1,216	-1,892

				_			
Fläche	Reflex-		nbol	m		x	24
Liaciic	Nr.	Gdt.	Miller	P	6		y
			ıd				
<u>p</u> ³	6	<u> </u>	117	160046'	66 ⁰ 16′	0,749	2,147
e^{4}	4	70	704	91 10	56 25	1,506	-0,031
	2			— 89 47	57 24	-1,561	+0,006
	3			99 13	58 24	—1 ,601	0,26 0
	4	İ		—105 51	64 54	-1,802	-0,512
	5		Ĭ	—106 25	60 4	-1,666	-0,491
	6	l		—106 4	61 9	-1,744	-0,502
	7			—100 19	64 57	-1,846	-0,336
	8			86 11	54 9	-1,239	+0,083
	9			— 80 6	44 40	-0,994	+0,174
e^3	4	07	074	179 34	57 34	0,012	1,574
	2			179 4	56 12	0,024	-1,494
	3			171 47	57 54	0,228	-1,578
	4			169 44	58 32	0,294	-1,608
	5			166 5	59 44	0,411	-1,660
	6		İ	171 21	60 22	0,264	—1,738
	7			470 2	63 53	0,353	-2,004
	8	i		185 26	59 17	-0,159	-4,676
	9			184 56	49 44	-0,102	-1,176
	10			191 38	43 36	-0,192	-0,933
	. 11			181 35	44 38	0,013	-0,987
	12		}	183 26	42 27	-0,031	-0,523
e^2	1	10	101	89 55	57 18	1,558	0,002
	2	1		95 27	49 18	1,157	0,110
	3			101 48	44 14	0,953	0,199
	4	İ		97 3	42 49	0,903	-0,112
•	5	ì		101 21	38 33	0,781	-0,157
	6	:		80 19	61 18	1,801	0,307
	7			96 57	58 49	1,640	-0,200
II	1	-	-	112 36	23 48	0,407	-0,169
	2			117 30	24 44	0,409	0,213
	3	:	ļ.	110 17	24 44	0,432	-0,160
	4	1		114 26	20 51	0,347	-0,158
	5	į	1	113 50	18 15	0,302	-0,133

 $\begin{array}{c} \text{Tabelle IV.} \\ \text{B. Projection auf (010) (0$$$$ ϖ).} \end{array}$

Fläche	Reflex- Nr.		nbol Miller	φ	ę	x	y
\overline{c}		0	004	00 0'	900 0'	_	_
e^4		70	704	—57 28	90 2	<u> </u>	_
e^2	1	10	707	124 19	89 35	_	_

Fläche	Reflex- Nr.	Syn Gdt.	nbol Miller	φ	ę	\boldsymbol{x}	y
e^{4}		70	707	122030'	900 1'	_	
\overline{e}^2	1	10	101	57 8	90 0	–	<u> </u>
e ³	1	07	071	4 26	33 57	0,047	0,673
	2			0 4	32 38	0,0001	0,640
	3	j		12 31	31 2	0,430	0,587
	4			17 10	33 44	0,186	0,602
	5			9 50 \	45 13	-0,172	0,993
	6			— 5 14	30 6	-0,053	0,577
	7			—25 43	34 44	-0,295	0,613
e^{1}	4	<u>01</u>	077	477 54	33 45	0,024	-0,668
<u>-</u>	2	_		162 52	30 29	0,483	-0,559
	3		l	154 3	34 20	0,300	-0,614
	4			170 40	45 22	-0,164	0,999
	5			—172 57	42 32	0,112	-0,911
	6			175 37	34 12	-0,046	-0,604
p^3	1	<u> </u>	774	— 58 5	48 29	0,959	0,597
4	2			— 59 53	48 34	-0,980	0,568
	3			55 23	53 49	-1,125	0,777
	4			- 5 7 3 1	60 46	-1,507	0,960
	5		İ	— 65 5	75 6	-3,408	1,583
	6			— 27 40	38 47	-0,373	0,712
	7			— 52 42	47 43	0,854	0,662
p^1	4	1	777	-121 26	48 55	0,979	-0,598
-	2		ļ	127 15	45 39	0,814	-0,619
	3			134 20	45 3	0,746	0,700
	4	}	1	-447 54	39 12	-0,434	0,691
	5		1	—115 20	61 12	1,558	-0,939
n4	4	<u>71</u>	177	122 49	49 33	0,986	0,636
\underline{p}^4	2	<u> </u>) '''	124 34	53 49	1,126	-0,776
	3			123 5	70 20	2,344	1,527
	4		1	138 24	33 4	0,432	-0,487
	5			128 53	40 39	0,668	-0,539
	6			124 15	58 43	1,360	-0,926
p^2	4	41	471	57 2	49 7	0,969	0,629
P	2		'''	39 45	30 9	0,374	0,447
	3			56 27	55 8	1,196	0,793
	4			57 28	60 37	1,497	0,955
	5			54 16	52 55	4,074	0,772

Die Reflexe zeigten keine, bestimmten Flächen entsprechende, schärfer gesonderten Lichtpunkte. Dass auch die Flächen e und p an der Bildung der Aetzfiguren theilnehmen, konnte aus dem Aufleuchten zahlreicher Punkte auf den Flächen der Unterseite bei Einstellung von e, bezw. p, erkannt

C. Hlawatsch.

8

werden. Von bemerkenswerthen Aetzzonen lassen sich aus den beiden Projectionsbildern 3 und 4 die Zonen p:e (Fig. 4) und $0\overline{1}:\frac{T}{3}0$ (Fig. 3) graphisch bestimmen. Die Reflexzüge der krummen Flächen ändern beim Aetzen ihre Lage wenig; ein Zusammenhang mit den Aetzsiguren ist nicht zu bemerken.

Die Symmetrie der tetragonal-bipyramidalen Gruppe tritt namentlich auf Fig. 3 deutlich hervor; auf Fig. 4 ist keine bemerkenswerthe Asymmetrie zwischen den beiden Krystallhälften zu sehen. Diese Beobachtung stimmt überein mit den Resultaten, welche Traube bei seinen Λetzversuchen am Wulfenit und Scheelit¹) erhielt. Es scheint daher, als ob die Hemimorphie bei der Gruppe des Wulfenits entweder zu geringen Einfluss auf die Differenzen in der Angreifbarkeit durch chemische Reagentien besitze, oder dass die bisher beobachteten Verschiedenheiten in der Ausbildung von Ober- und Unterseite Functionen des Wachsthums seien, wie Traube meint. In diesem Falle zeigt sich eine Aehnlichkeit mit den Beobachtungen von Brezina am unterschwefelsauren Blei²), welche er durch den Einfluss der Schwere erklärte. Die von Brezina erwähnten Winkeldifferenzen zwischen Ober- und Unterseite wurden auch am Stolzit beobachtet; so ergaben die Beobachtungen an Krystall 4 der ersten Publication über den Stolzit von Brokenhill³) folgende Werthe für den Winkel φ:

e auf der einen Seite 57°26', auf der anderen Seite 57°21' p - - - 65 57 - - - 65 36

Element p₀ des Raspit.

In der ersten Publication über Raspit 4) wurde hervorgehoben, dass sich q_0 zuverlässig bestimmen liess, p_0 dagegen einer Bestätigung bedurfte. Diese Bestätigung resp. Correctur ermöglichte das neue Material. Die Krystalle gleichen durchaus jenen der Stufe 2 der erwähnten Publication. Die Flächen a, b, c und d zeigten dieselbe Beschaffenheit wie dort, gaben sogar eher noch schlechtere Reflexe; e war hingegen öfter und besser ausgebildet. Deshalb wurden die Elemente q_0 und u nicht geändert, für p_0 hingegen der neu gefundene Werth eingesetzt. In der folgenden Tabelle V sind die Messungen (mit Ausnahme des Krystalls 4 bei Signalverkleinerung gewonnen) für die Projection auf (040) zusammengestellt. Tabelle VI giebt die corrigirten Elemente und die Winkeltabelle.

⁴⁾ N. Jahrb. f. Miner. etc. Beil.-Bd. 10, 458-459. Ref. diese Zeitschr. 30, 398.

²⁾ Brezina, Die Krystallform des unterschwefelsauren Bleies. Sitzungsber. d. k. k. Akad. d. Wiss. Wien, Oct. 4874, 64, 4. Abth. 9, 45, 24 und 23.

³⁾ Ann. d. k. k. naturh. Hofmus. 12, 36.

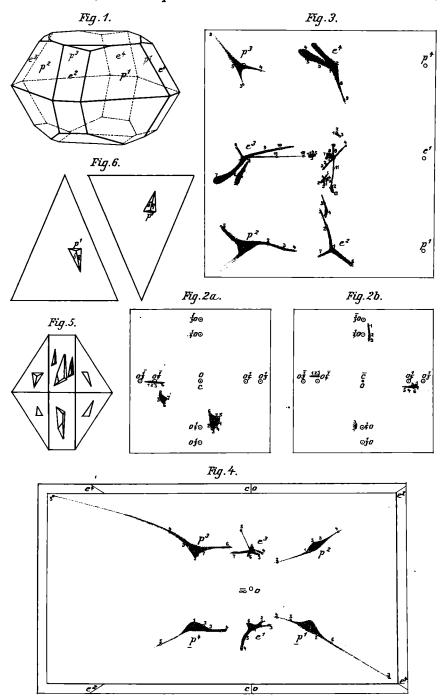
⁴⁾ Ebenda S. 38; siehe auch diese Zeitschr. 29, 438.

Raspit.
Tabelle V. Gemessene Winkel.

Fläche	Kryst.	I	Zahl	Krys	Kryst. II	Zahl	Kryst. III	t. 111	Zahl	Kryst. IV	r. 1V	Zahl	Mi	Mittel	Zur Berech der Winkeltal	Zur Berechnung der Winkeltabelle
	6	ò	Beob.	ø	ò	Beob.	ø	δ	Beob.	æ	ò	Beop.	8	ò	۵	ò
æ	88048, 800	900 0,	64	900 2/	900 2, 800 0,	-	89056' 900 2'	900 2,	93	89058	89058' 89057'	631	(89036')	0 006	(89036') 900 0' 900 0' 900 0'	000 00
p	l	•		1	0	 -	l	0	1		0	1		1	[ı
o	17 41	89 59	4	17 29	17 29 90 7	57	17 36	47 36 89 57	4	47 35	47 35 89 59	ന	17 37	0 06	17 37 90 0 17 41	0 06
							(dobb. G	dopp. Gewicht)								
9	-28 56	90 4	63	-29 17 90 0	0 06	-	-28050	-28050' 900 0'	4	-29 6 89 57	89 57	-	9.0	0 06	29 0 90 0 29 0	0 06
q	17 39	43 47	က	17 48	17 48 43 49	ന	17 41	17 44 43 17	4	17 42	17 42 43 17	60	17 43	43 48	17 43 43 48 17 41 43 22	43 22

Tabelle VI.

Winkeltabelle. Elemente.


$p_0 = 0.8349$	$q_0 = 1,0587$	e = 0.3037
$a_0 = 4,2024 \cdot \lg p_0 = 9,92005 p$	$q_0 = 0.02478$	$\log \frac{r_0}{q_0} = 9,89527$
$a_0 = 4,2024$	$v_0 = 0.8999$	h = 0.9527
	$1g o_0 = 9,95420$	lg cos µ 9,48252
g a = 0,12575	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \frac{1}{16} \sin \frac{1}{\mu} \frac{9,97898}{16}$
a=4,9358	6 = 4,444 <u>2</u>	$180^{6} - \beta$ 72019'

Z.	Buch-	Symb Gdt. M	nbol Miller			ò		E_0	7.0		E	i	٤-	s,	y,	$d'= \operatorname{tg} \varrho$	Flå- S	ymbole	Winkel
-	o	0	004 900 07	900) 0	17044'	1,1	17041' 00 0'	00	-	4704	=	00 00	47044' 00 0' 0,3488	0	0,3188	a:c	a: c 100:001 72019'	72019
61	q	8	040	•	0	0 06	•	0 0	06	•	•		0 06	0	8	8	e : e	704:004	46 44
က	в	8	400	90	0	06	0	0 06	0	0	06		0 0	8	0	8	d:c	011:001	46 38
4	9	40	404	06	0	-39	<u>.</u>	0 0 65- 0 65-	0	0	-20 0		0 0	0,5543	0	0,5543	q:e	0,5343 d:e 011:701	64 54
30	ø	0.4	044	9	0	67	60	17 41 48 1	48	_	23		12 2 46 38	0,3188 4,4442	1,1112	1,1561	p:q	010:011	13 22

10 C. Hlawatsch. Krumme Flächen und Actzerscheinungen am Stolzit.

Zu einer Bestimmung des specifischen Gewichtes, sowie zu einer Controlanalyse reichte das Material nicht aus; ebenso musste der Kleinheit der Krystalle halber auf eine Neubestimmung des mittleren Brechungscoëfficienten β verzichtet werden.

Zum Schlusse sei es dem Verfasser noch gestattet, den Herren Prof. Dr. V. Goldschmidt in Heidelberg und Dr. H. Graber in Wien für einige in liebenswürdigster Weise ertheilte Rathschläge auf's Wärmste zu danken.

C. Mawatsch del Zeitschrift f. Krystallogr. u. Min. 31. Bd.

Lith Hubert Köhler München